Existence of Solutions for Non-autonomous Functional Evolution Equations with Nonlocal Conditions
نویسنده
چکیده
In this work, we study the existence of mild solutions and strict solutions of semilinear functional evolution equations with nonlocal conditions, where the linear part is non-autonomous and generates a linear evolution system. The fraction power theory and α-norm are used to discuss the problems so that the obtained results can be applied to the equations in which the nonlinear terms involve spatial derivatives. In particular, the compactness condition or Lipschitz condition for the function g in the nonlocal conditions appearing in various literatures is not required here. An example is presented to show the applications of the obtained results.
منابع مشابه
ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS
Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...
متن کاملNonlinear functional integrodifferential evolution equations with nonlocal conditions in Banach spaces
In this paper, the Leray-Schauder Alternative is used to investigate the existence of mild solutions to first-order nonlinear functional integrodifferential evolution equations with nonlocal conditions in Banach spaces. AMS subject classifications: 34K30, 34A60, 34G20
متن کامل$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملImpulsive integrodifferential Equations and Measure of noncompactness
This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.
متن کاملOn time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012